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ABSTRACT

The concentration polarization model has been applied to analyze the permeate
flux of hollow-fiber membrane ultrafiltration. Comparison of theoretical prediction
with experimental data has been made under various transmembrane pressures,
feed velocities, and solution concentrations. Both theoretical prediction and ex-
perimental results show that average permeate flux increases as transmembrane
pressure or feed velocity increases, but decreases when solution concentration

increases.
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INTRODUCTION

Ultrafiltration has now assumed prominence as a practical industrial
process for the concentration, purification, or dewatering of macromolec-
ular and colloidal species in solution. One of the common ultrafiltration
designs is the hollow-fiber configuration in which the membrane is formed
on the inside of tiny polymer cylinders that are then bundled and potted

into a tube-and-shell arrangement.
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The rapid development of this process was made possible by the advent
of anisotropic, high-flux membranes capable of distinguishing among mo-
fecular and colloidal species in the 10 Ato 10 pm size range. Since this
process is a pressure-driven membrane separation, the pressure applied
to the working fluid provides the driving potential to force the solvent to
flow through the membrane. Typical driving pressures for ultrafiltration
systems are in the range of 10 to 100 psi. For a small applied pressure,
the solvent flux through a membrane is observed to be proportional to
the applied pressure. However, as the pressure is increased further, the
flux begins to drop below that which would result from a linear flux-
pressure behavior. Eventually a limiting flux is reached where any further
pressure increase no longer results in any increase in flux. The reason for
the existence of a limiting flux is that the high-flux characteristics of these
membranes result in rapid convection of retained solutes to the membrane
surface, leading to the well-known phenomena of concentration polariza-
tion. Under high-pressure operation, the concentration at the membrane
surface can even rise to the point of incipient gel precipitation, forming
a dynamic secondary membrane on top of the primary structure. Further-
more, concentrated solutions of macromolecules have quite an apprecia-
ble osmotic pressure. At the high concentrations found in ultrafiltration
polarization layers, the osmotic pressure can even be of the same order
of magnitude as the applied pressures generally used in ultrafiltration.

Permeate flux of ultrafiltration 1s always analyzed by use of one of
following models: the gel-polarization model (1-8), the osmotic-pressure
model (9-17), or the resistance-in-series model (17, 18). In this study,
the concentration polarization model for analyzing the permeate flux of
hollow-fiber ultrafiltration will be introduced. The effects of various pa-
rameters on permeate flux will also be discussed.

THEORY

The model was developed to simulate forced-convection ultrafiltration
in a horizontal hollow-fiber membrane system. The feed-concentrate
stream in the inside of the membrane tubes is laminar, and the mass den-
sity, viscosity, and solute diffusivity are assumed to be constant. We also
assume that the thickness of the concentration-polarization layer near the
tube wall is small, and that this boundary layer may be considered to be
a flat plate.

The Governing Equations

Referring to Fig. 1, an integral equation for solute balance within the
concentration boundary layer may be obtained as
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Co {pvm(z)dz + dizUrrm pu(z, r)dr] dz}

m— 3(2)
(1)
=2 e nputz, nar| d
T dz Fm— 8(2) iz, putz, mdr | 6z
or it may be rewritten as
d (™
Ez-J u(z, Nlc(z, r) — coldr — covm(z) = 0 )

rm—98(z)

Integrating Eq. (2) with respect to z and using the boundary condition ¢
= ¢y at z = (, the above equation becomes

| (e, DIc(E, ©) — cold©dL = coLuma | Ve 3
where
=y )
Yy =Ftym — F 5)
V() = vm/tmo (6)
£ = z/L )

in which v, denotes the permeate flux at the entrance of hollow fibers.

Yuan and Finkelstein (19) used a perturbation technique to solve the
Navier—Stokes equations and obtain the steady-state z-component veloc-
ity profile for laminar flow through a porous tube. For small values of
permeation velocity and tube radius that are appropriate to this work,
their result reduces to the following equations:

2
e NCIN
0 Uorm Im
w(z, r) r ry
v - 12 - 6] ®

The axial velocity distribution expressed by Eq. (8) can be rewritten as
u, o _ 2 () @Y
L0 fu (oo (9] oo

Y= UoFm/UmoL (1

where
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(b) Solute balance

FIG. 1 Mass balances within the concentration boundary layer.
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Since the thickness of concentration boundary layer is very thin, within
it the concentration profile may be assumed to be the following function
of {:

c€&, ) — co = [em(®) — ol — O)° (12)
It should be noted that the above equation satisfies the boundary condition

¢ = ¢pand dc/of = 0 at the boundary layer, { = 1, while ¢ = cnat { =
0. By substitution of Egs. (10) and (12) into Eq. (3), one obtains

SO\[1 (5 1 (36 ¢
- [1 , (%) V(g)g][C(g) Y (f—f’)[g 59 - %(7(?)] - [ v

(13)
where

C® = cm®/co (14)

Making a solute mass balance at the membrane surface where perfect
solute rejection occurs, we have

a_C(azr’*r) or vpEen®) = — 2 %E 0

Um(Z)em(z) = D o 3 oL

=0
(15)

Substitution of Eq. (12) into Eq. (15) yields the thickness of the concentra-
tion boundary layer as
8§ _ 2A[CEH) — 1]
T COVE® {16
where
A = Dlvgorm (17)

By substitution of Eq. (16) into Eq. (13), one obtains the dimensionless
concentration distribution of solute at the membrane surface, C(§), relat-
ing with the dimensionless solvent permeate flux, V(§), as

2‘Y(C(§) - 1)3A2 § l-_ LA(C(E,) _ 1) B £
CEVE? [1 - e (v)] [6 15 COVE ] - J, v

(18)

In membrane separation processes, solutes that are rejected by the
membrane accumulate on the membrane surface. The concentration of
solutes on the membrane surface is always higher than in the bulk solution.
This is the so-called concentration polarization phenomenon. Complete
solite rejection on the membrane surface will be assumed in this study.
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At steady state, the quantity of solutes conveyed to the membrane is equal
to those that transfer back by convection. Consequently, the following
solute balance at the membrane surface is reached.

Um(E)cm() = kB)[cm®) — co 19

Since the convective mass transfer rate of solute from the membrane
surface to the bulk fluid is generally high, a high mass-transfer rate is
considered in Eq. (19). According to film theory, the coefficient of high
mass-transfer rate k is related with that of low mass-transfer rate & as (20)

Um(E)

MO = T ol - 0 @] 20
Combination of Eqgs. (19) and (20) for eliminating k yields
Cc® = 2 explun@/k®) = explum@kOIVE D
or
V() = [k(&)/vmo(§)] In C(§) (22)

The Graetz solution (21) for convective heat transfer in laminar flow
channels, suitably modified for mass transfer, may be used to evaluate
the mass-transfer coefficient k. The Graetz solution gives

~ unD? 1/3 ~ upD? 173
k(&) = 1.08 (Zrmz) = 0.86 rng) (23)

Taking the overall balance over the tube section from z = 0 to z = z,
one obtains

Q=0 - Zﬂrmf Um(2) dz (24)
0
This can be written in dimensionless form as
up( (g) fg
do 1 v ), V(§) dE 25)

From Eqgs. (23) and (25), we have

Umo rmLE)"
©® 1.16vmo (—usz)

Ug vaL Umol'm > 13
@

2 £ —1/3
1_1671/3A—2/3§l/3 [] _ :;’_f V(g) dg]
0

I
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Substitution of Eq. (26) into Eq. (21) results in

2 £ —1/3
c® = CXP[V(ﬁ){l-m\(”}/\—m%”}[1 - ;j V(©) d&] }] 27
0

which is the second relation between solvent permeate flux and solute
concentration at the membrane surface. Finally, the dimensionless solvent
permeate flux V(£) and the dimensionless solute concentration at mem-
brane surface C(£) may be obtained by solving Eqs. (18) and (27) simul-
taneously, as follows.

Permeate Fluxes

For simplicity, we assume that the dimensionless solvent permeate flux
decays along the longitudinal position as

V) =1 - b2 - §) (28)
in which b is a constant to be determined. In addition to the inlet condition
V=1 a ¢€=0 29

Eq. (28) also satisfies the approximate outlet condition shown by the ex-
perimental results (15):

oV/eE = 0 at &£ =1 30)
Substituting Eq. (28) into Egs. (18) and (27), and then letting £ = 1,
two algebraic equations for » and C; (value of C at £ = 1) are obtained:

8Y(Ci — 1)3A2[1 _2-(- b)][l LM] _q1 2

C3(1 - b)? v 6 15C,(1—b) 3

(3n

~-173
C, = exp [1.167”3/\‘2’3(1 - b){l - %(1 - %)H (32)

Thus, b and C, can be determined by solving Eqs. (31) and (32) simultane-
ously. The results are shown in Fig. 2 with y and A as parameters. It is
seen from Fig. 2 that if vy is small, the solute concentration on the mem-
brane surface at the outlet can reach several hundred times that at the
inlet, leading to high resistance to concentration polarization at the outlet.

The average solvent permeate flux through a whole hollow fiber may
be defined as

L
Um = %JO um(2) dz (33)
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FIG. 2 Calculated values of b and C;.
or, in dimensionless form,
— D 1
v [ vede (34)
mo 0
By substitution of Eq. (28) into Eq. (34), we have
— 2b
V=1- 3 (33)

The graphical representation of V is given in Fig. 3. It is seen from this
figure that average permeate flux increases as the diffusion coefficient D
increases. This is because an increase of diffusivity will increase the mass-
transfer coefficient, resulting in increasing the permeate flux as shown in
Eqgs. (22) and (23). The permeate flux also increases as u, increases or as
L decreases.

Comparison of Theoretical Prediction with Experimental
Results

The theoretical prediction of average permeate flux v, will be compared
with the experimental results obtained by Cheng (22, 23). Cheng employed
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FIG. 3 Calculated values of V.

an Amicon model H1P 30-20 hollow-fiber cartridge (rm = 2.5 X 1074 m,
L = 0.153 m, effective membrane area = 600 cm?) made of polysulfone
for experimental studies on membrane ultrafiltration of aqueous solutions
of Dextran T500 (Pharmacia, M, = 170,300 and M,, = 503,000) at 25°C.
The flow sheet of the ultrafiltration apparatus used in Cheng’s work is
shown in Fig. 4. The experiments will be described briefly: The tested
solute was more than 99% retained by the membrane used. The solvent
was ion exchange pure water. The feed solution was circulated by a high-
pressure pump with a variable speed motor (L-07553-20, Cole-Parmer Co.,
Chicago, Illinois, USA) and the feed flow was measured with a flowmeter
(L-03217-34, Cole-Parmer Co.). The pressure was measured by a pressure
transmitter (model 891.14.425, Wika).

The feed solution concentrations were 0.1, 0.2, 0.5, 1.0, and 2.0 wt%
dextran T500, the feed flow velocities were 0.051, 0.102, 0.204, 0.306
m/s, and the feed inlet pressures were 30, 50, 70, 100, and 140 kPa. During
a run, both permeate and retentate were recycled back to the feed tank
to keep the feed concentration constant. After each solution run, the mem-
brane module was cleaned by a combination of high circulation and back-
flushing with pure water. The experimental results are shown in Figs.
5-9.
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1. feed tank 6 . flow meter
2. pump 7 . permeate
3. pressure gauge 8 . collector

4 . hollow fiber module 9 . stirrer

5 . pressure control valve 10. thermostat

FIG. 4 Flow diagram of ultrafiltration apparatus.

For theoretical prediction, the diffusivity of Dextran T500 in aqueous
solution at 25°C may be estimated by the following empirical equation
(24):

D x 10" = 1.204 + 2.875 x 10~ '¢co — 5.042
x 1073c§ + 2.838 x 1073¢3

(36)

in which the unit of concentration has been changed from g/mL to wt%.
The values of vme could be calculated from the correlation equation ob-
tained in Cheng’s works. The correlation equation for v is
B AP,
Um0 = 542X 10°+7.49 X 108ug O 20870 1 1.56 x 105ug %3¢ AP,

@37

Thus, the theoretical values of 7y, are calculated from Egs. (35), (36}, and
(37) coupled with the use of Fig. 2. The theoretical results are also pre-
sented in Figs. 5-9 for comparison.

It is found from Figs. 5-9 that the deviation of theoretical values from
the experimental data increases as the feed velocity or transmembrane
pressure increases, or when the solution concentration decreases. The
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FIG. 5 Comparison of theoretical values with experimental results for c¢; = 0.1 wt%.
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FIG. 6 Comparison of theoretical values with experimental results for ¢ = 0.2 wt%.
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8
C0=1.O wt %
uo(ms") Experimental  Theoretical
0.051 o
8 0.102 a —
' 0.204 Y -
% 0.306 s =
N
£
o™
E 4
o A
[Te]
A
9 A ™ °
t A
£ P g
z LTSS
g o8& 0 - -
/
0 . I * 1 i 1 1.
0 0.4 0.8 ™

FIG. 8 Comparison of theoretical values with experimental results for co = 1.0 wt%.
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FIG. 9 Comparison of theoretical values with experimental results for ¢o = 2.0 wt%.

reasons for the occurrence of this deviation may be the following unsuita-
ble assumptions: flat plate (i.e., 8/ry, is small), constant diffusivity, choice
of assumed forms (Eqgs. 12 and 28), and choice of the boundary condition
(Eq. 30).

CONCLUSIONS

A concentration polarization model for analyzing the permeate flux of
hollow-fiber membrane ultrafiltration has been introduced. First, a dimen-
sionless integral equation, Eq. (18), was derived from the solute balance.
In this equation the solute concentration on the membrane surface, C(§),
is related to the solvent permeate flux, V(£), and they are the unknown
functions to be determined. Another relation, between permeate flux and
solute concentration on membrane surface, Eq. (27), has also been derived
from the concept of concentration polarization. Mathematically, the distri-
butions of permeate flux and solute concentration on a membrane surface
may be obtained by solving Eqgs. (18) and (27) simultaneously.
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For simplicity, an approximate solution for permeate-flux distribution
was obtained by assuming it has a quadratic form, Eq. (28). The average
permeate fluxes were thus calculated, and the results are presented in
Figs. 5-9 for comparison with experimental data. Both theoretical predic-
tion and experimental results show that the average permeate flux in-
creases as the transmembrane pressure or feed velocity increases, but it
decreases when the solution concentration increases.

It is also seen from Figs. 5-9 that theoretical prediction qualitatively
agrees with experimental data. However, the deviation of theoretical val-
ues from the experimental data increases as the feed velocity or transmem-
brane pressure increases, or when the solution concentration decreases.
It is believed that theoretical prediction may be improved if better forms
of the assumed equations can been found.

SYMBOLS

b constant defined in Eq. (28)

c solute concentration (wt%)

Co inlet solute concentration (wt%)

cm(2) solute concentration at the membrane surface (wt%)

Cc® dimensionless solute concentration, ¢n/co

C, dimensionless solute concentration at outlet, C(§ = 1)

D diffusion coefficient (m?-s~')

k mass transfer coefficient for low mass-transfer rate
(m*m~—2%s71)

k(z) mass transfer coefficient for high mass-transfer rates
(m*m-2%s7 1)

L length of hollow fiber (m)

AP, transmembrane pressure at fiber inlet (Pa)

0 volume rate of flow, wriu, (m3-s 1)

0o Q at the entrance (m3-s™1)

r radial coordinate (m)

’m radius of hollow fiber (m)

u(z, r) axial velocity (m's™1)

Up mean axial velocity at fiber inlet (m-s—1)

up(2) bulk axial velocity (m's™!)

v(z, 1) radial velocity (m-s™1)

Um(2) membrane permeation flux (m*>-m~2-s71)

Um mean membrane permeation flux defined in Eq. (33)
(m*m~2-s7")

Umo membrane permeation flux at fiber inlet (m*>-m~2.s~ 1)

V(&) dimensionless membrane permeation flux, vm/vme
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&

dimensionless mean membrane permeation flux, Um/vmo
Fm — r(m)

axial coordinate (m)

dimensionless parameter, (#orm)/(vmol)

thickness of the concentration boundary layer (m)

/8

dimensionless parameter, D/(vgorm)

Z/IL

density of solution (kg-m~3)
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